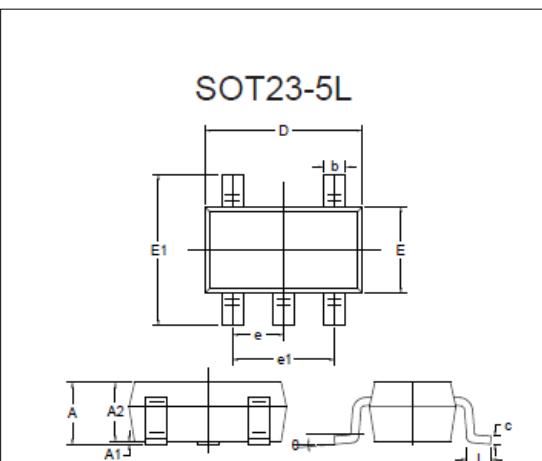


Features

- Output voltage range: 1.2V to 3.6V
- $I_{OUT(max)}$: 300mA
- PSRR: 70dB at 1KHz
- Standby current: 70 μ A (typ.)
- Shutdown current: 1 μ A (max)
- ESD Protected up to 2KV(HBM),200V(CDM)

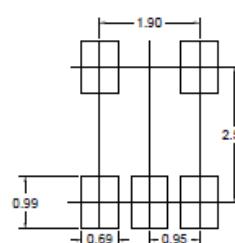
Applications

- CDMA / GSM
- PDAs/MP3
- WLAN, Bluetooth
- Cordless phone
- Battery-powered system

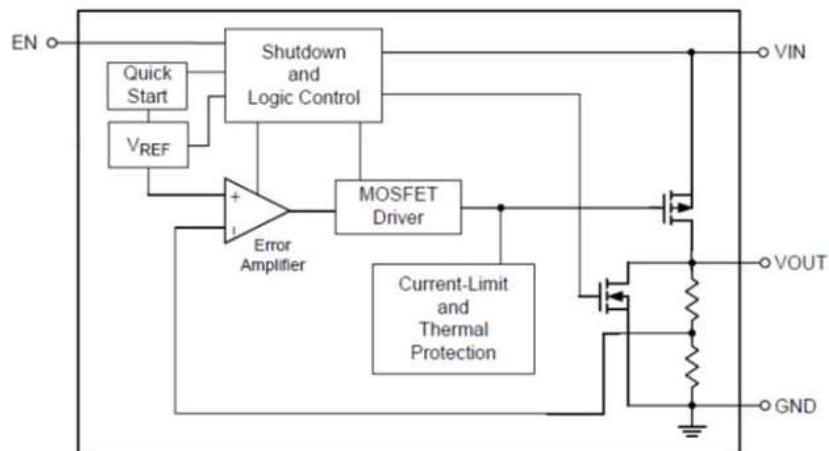

Description

The MCL9193K5 series are high ripple rejection, low-power consumption, low-dropout CMOS step-down voltage regulators with over-current and short circuit protection. These devices have very low quiescent bias current (70 μ A typ.), they can deliver 300mA of output current with very small input and output voltage differences, and still maintain good regulation. Due to the small voltage difference between the input and output and the low quiescent bias current, these devices are especially suitable for battery-operated products such as computers, consumer products and industrial equipment, which want to prolong the useful battery life.

Part Number and Marking Code

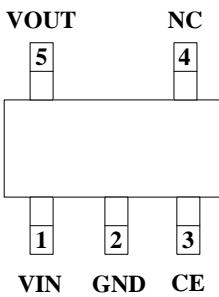

Part No	Package	Marking
MCL9193K512	SOT23-5L	DA=G3K
MCL9193K515	SOT23-5L	DS=J2T
MCL9193K518	SOT23-5L	DC=E2H
MCL9193K530	SOT23-5L	DK-06L
MCL9193K533	SOT23-5L	DE=A1D

300mA Low Drop-out Voltage Regulators

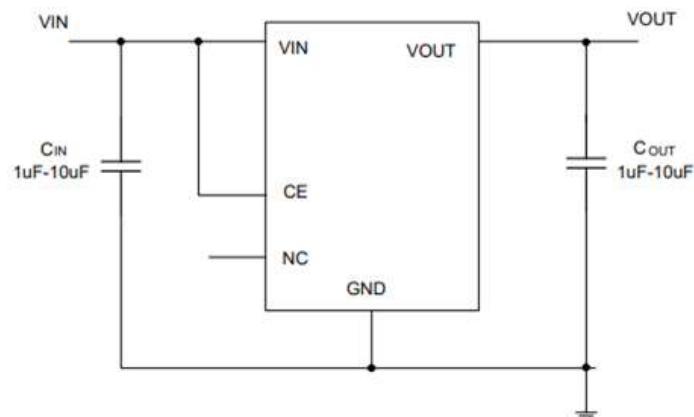


DIM	INCHES		MM		NOTE
	MIN	MAX	MIN	MAX	
A	0.041	0.049	1.05	1.25	
A1	0.000	0.004	0.00	0.10	
A2	0.041	0.045	1.05	1.15	
b	0.012	0.020	0.30	0.50	
c	0.004	0.008	0.10	0.20	
D	0.111	0.119	2.82	3.02	
E	0.059	0.067	1.50	1.70	
E1	0.104	0.116	2.65	2.95	
e	0.037(BSC)	0.050(BSC)			
e1	0.071	0.079	1.80	2.00	
L	0.012	0.024	0.30	0.60	
θ	0°	8°	0°	8°	

Suggested Solder Pad Layout



Functional Block Diagram


Pin Configuration and Functions (Top View)

SOT-23-5L

Pin No	Name	Description
1	VIN	Power supply.
2	GND	Ground.
3	CE	Enable.
4	NC	No connection.
5	VOUT	Output pin.

Typical Application Circuit

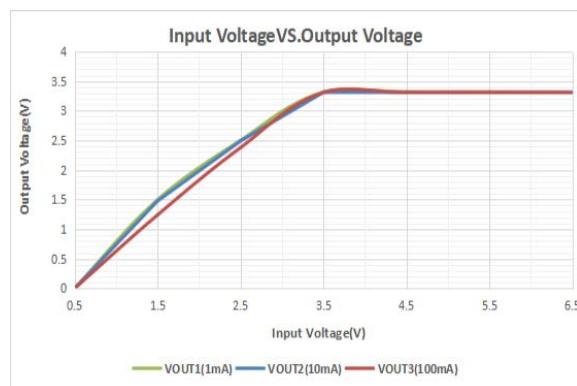
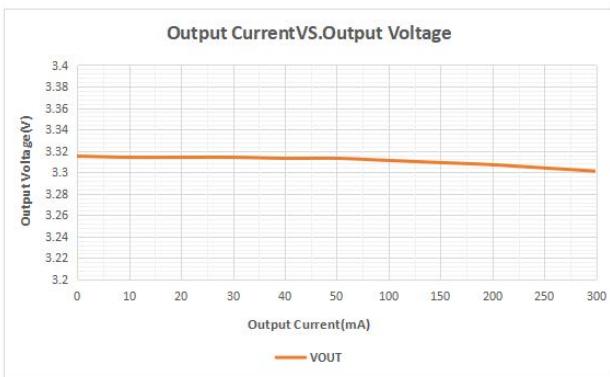
Absolute Maximum Ratings

- Operating Junction Temperature Range: -40~+85°C
- Storage Temperature Range: -55~+125°C

Parameter	Symbol	Value	Unit
Input Voltage	V_{IN}	7	V
Output Current	I_{out}	450	mA
Output Voltage	V_{out}	$V_{ss}-0.3$ to $V_{out}+0.3$	V
Soldering Temperature	T_{solder}	260, 10s	°C

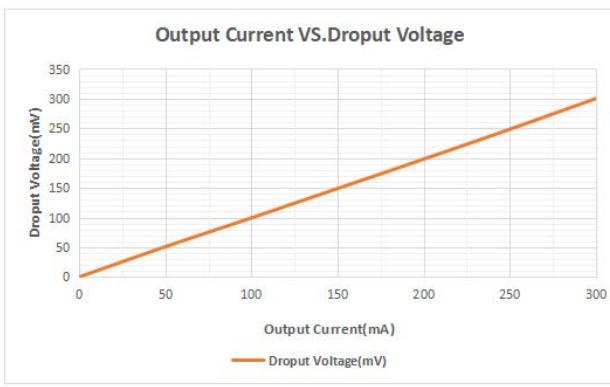
Package	Pd(mW)
SOT-23-5L	300

Electrical Characteristics



($V_{IN} = 5V$, $T_A = 25^\circ C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Output Voltage	$V_{out}(E)$ (Note 2)	$I_{out} = 40mA$, $V_{IN} = V_{out} + 1V$	X 0.98	$V_{out}(T)$ (Note 1)	X 1.02	V
Input Voltage	V_{IN}				5.5	V
Maximum Output Current	$I_{out}(max)$	$V_{IN} = V_{out} + 1V$		300		mA
EN Starting Voltage	V_{CE_ON} (Note 3)		1.1			V
EN Off Voltage	V_{CE_OFF}				0.4	V
Load Regulation	ΔV_{out}	$V_{IN} = V_{out} + 1V$, $1mA \leq I_{out} \leq 100mA$		50		mV
Dropout Voltage (Note 4)	V_{dif1}	$I_{out} = 100mA$		90		mV
	V_{dif2}	$I_{out} = 200mA$		230		mV
Standby Current	I_{ss}	$V_{IN} = V_{out} + 1V$		70		µA
Shutdown Current	I_{CEL}	$V_{ce} = 0V$		1		µA
Line Regulation	$\frac{\Delta V_{out}}{\Delta V_{IN} \cdot V_{out}}$	$I_{out} = 40mA$ $V_{out} + 1V \leq V_{IN} \leq 8V$		0.05		%/V
Output Noise Voltage	en	$I_{out} = 40mA$, 300Hz to 50kHz		50		µVrms
Power Supply Rejection Ratio	PSRR	$V_{in} = [V_{out} + 1]V + 1V_{p-pAC}$ $I_{out} = 40mA$, $f = 1kHz$		70		dB

Note:


- $V_{out}(T)$: Specified output voltage.
- $V_{out}(E)$: Effective output voltage (that is, the output voltage when $V_{IN} = (V_{out}(T) + 1.0V)$ when I_{out} remains at a certain value).
- V_{ce} : Considering the high and low temperature and process deviation, it is recommended that customers set the enable voltage of CE pin to 1.1V with a margin. There is a built-in 1MΩ resistor between CE pin and GND pin inside the chip.
- V_{dif} : $V_{IN1} - V_{out}(E)$.
 V_{IN1} : Gradually reduce the input voltage, the input voltage when the output voltage drops to 98% of $V_{out}(E)$.
 $V_{out}(E)' = V_{out}(E) \times 98\%$.

Curve Characteristics

Output Current VS Output Voltage

Input Voltage VS Output Voltage

Output Current VS Dropout Voltage

Ordering Information

Device	Packing
Part Number-TP	Tape&Reel: 3Kpcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications , enhancements , improvements , or other changes . **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights ,nor the rights of others . The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.mccsemi.com/Home/TermsAndConditions>.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. **MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources.** MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.