

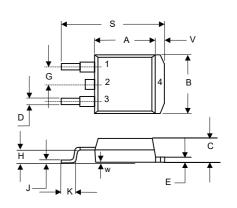
Features

- Halogen Free. "Green" Device (Note 1)
- Lead Free Finish/RoHS Compliant(Note 2) ("P" Suffix Designates Compliant. See Ordering Information)
- Epoxy Meets UL 94 V-0 Flammability Rating
- Low Switching Losses and High Efficiency
- Low Reverse Leakage
- Ultrafast Recovery Time
- Planar Structure Die and Soft Recovery Characteristics

15 Amp FRED Rectifiers 1200 Volts

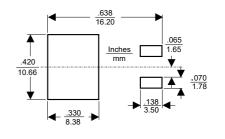
Maximum Ratings @ 25°C (Unless Otherwise Specified)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}		
Working Peak Reverse Voltage	V_{RWM}	1200	V
DC Blocking Voltage	V _R		
RMS Reverse Voltage	V _{RMS}	840	V
Average Rectified Forward Current	I _{F(AV)}	15	Α
Non-Repetitive Peak Surge Current @8.3ms Half Sine Wave	I _{FSM}	110	А
Current Squared Time @ 1ms≤t≤8.3ms	l ² t	50	A ² s


Internal Structure

Pin	Description	Simplified Outline	Graphic Symbol
1	N/C		
2&4	Cathode	MCC.	1 o N/C
3	Anode		3 0 284

Note:


- 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 2. High Temperature Solder Exemption Applied, See EU Directive Annex 7a.

D²-PAK

DIMENSIONS						
DIM	INCHES		M	М	NOTE	
DIIVI	MIN	MAX	MIN	MAX	NOTE	
Α	0.331	0.370	8.40	9.40		
В	0.378	0.417	9.60	10.60		
С	0.165	0.189	4.20	4.80		
D	0.027	0.037	0.68	0.94		
Е	0.045	0.055	1.14	1.40		
G	0.010		2.54		TYP.	
Ι	0.096	0.134	2.43	3.40		
J	0.011	0.025	0.28	0.64		
K	0.071	0.131	1.80	3.32		
S	0.575	0.625	14.60	15.87		
V	0.042	0.058	1.07	1.47		
W	0.000	0.010	0.00	0.25		

Suggested Solder Pad Layout

Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TJ	Operating Junction Temperature Range		-55		150	°C
T _{stg}	Storage Temperature Range		-55		150	°C
Rth _(J-C)	Thermal Resistance from Junction to Case			2		°C/W
Rth _(J-A)	Thermal Resistance from Junction to Ambient			50		°C/W

Electrical Characteristics @ 25°C Unless Otherwise Specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Forward Voltage	V _F	I _F =15A;T _J =25°C		2.40	3.20	V
		I _F =15A;T _J =125°C		1.90	2.50	V
Reverse Current	I _R	V _R =1200V;T _J =25°C			5	
		V _R =1200V;T _J =125°C			200	uA
Junction Capacitance	CJ	V _R =4V;f=1MHz;T _J =25°C		55		pF

Dynamic Recovery Characteristics @ 25°C Unless Otherwise Specified

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
		I _F =0.5A; I _R =1.0A;I _{RR} =0.25A			37	60	
Reverse Recovery Time	t _{rr}		T _J =25°C		220		ns
		I _F =15A d _{iF} /d _t =-200A/μs V _{RM} =400V	T _J =125°C		324		
Peak Recovery Current I _{RRM}			T _J =25°C		4.4		_
	IRRM		T _J =125°C		9.1		Α
Reverse Recovery Charge	Q _{rr}		T _J =25°C		483		nC
			T _J =125°C		1483		ПС

100

0

Curve Characteristics

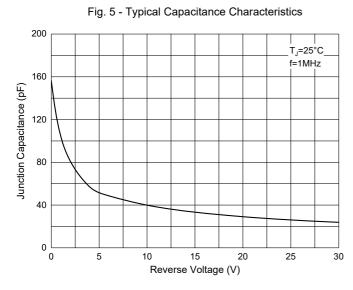
Resistive or Inductive Load

50

25

75

Case Temperature (°C)


100

125

150

Fig. 1 - Forward Current Derating Curve

Fig. 3 - Typical Forward Characteristics 30 10 Forward Current (A) TJ=25°C =100°C =125°C =150°C 0.1 0.01 0.8 0.0 0.4 12 1 6 2.0 24 28 32 Forward Voltage (V)

80

Peak Forward Surge Current (A)

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current

Number of Cycles at 60 Hz

8.3 ms Single Half Sine-Wave

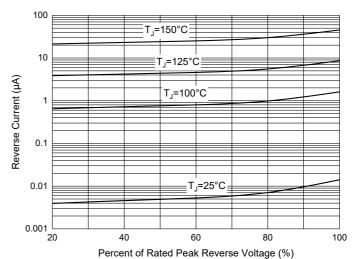
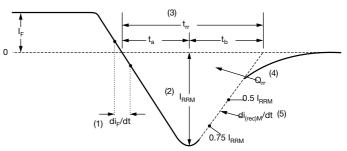



Fig. 6 - Reverse Recovery Waveform and Definitions

- (1) di_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $t_{\rm fr}$ reverse recovery time measured from zero crossing point of negative going $I_{\rm F}$ to point where a line passing through 0.75 $I_{\rm RRM}$ and 0.50 $I_{\rm RRM}$ extrapolated to zero current.
- (4) Q_{rr} area under curve defined by t_{rr} and I_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) di_{(rec)M}/dt - peak rate of change of current during t_b portion of t_{rr}

Ordering Information

Device	Packing
Part Number-TP	Tape&Reel: 800pcs/Reel
Part Number-BP	Bulk:50pcs/Tube,1Kpcs/Box,5Kpcs/Carton

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Rev.4-1-11292023 4/4 MCCSEMI.COM