

Features

- · AEC-Q101 Qualified
- Halogen Free. "Green" Device (Note 1)
- Moisture Sensitivity Level 1
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

NPN/PNP Small Signal Transistors

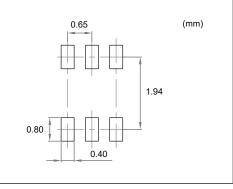
Maximum Ratings @ 25°C Unless Otherwise Specified

- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 625°C/W Junction to Ambient

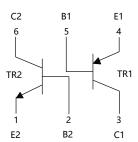
TR1-PNP Pin3,4,5

Parameter	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	-60	V
Collector-Emitter Voltage	V _{CEO}	-60	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current	I _C	-0.6	Α
Collector Dissipation	P _C	200	mW

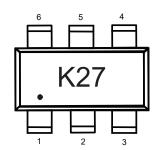
TR2-NPN Pin1,2,6


Parameter	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	75	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6	V
Collector Current	I _C	0.6	Α
Collector Dissipation	P _C	200	mW

Note: 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


SOT-363

DIMENSIONS					
DIM INCHES		M	M	NOTE	
DIIVI	MIN	MAX	MIN	MAX	INOTE
Α	0.006	0.014	0.15	0.35	
В	0.045	0.053	1.15	1.35	
С	0.079	0.096	2.00	2.45	
D	0.026		0.6	5	TYP.
G	0.047	0.055	1.20	1.40	
Н	0.071	0.087	1.80	2.20	
J		0.004		0.10	
K	0.031	0.043	0.80	1.10	
L	0.010	0.018	0.26	0.46	
М	0.003	0.006	0.08	0.15	


Suggested Solder Pad Layout

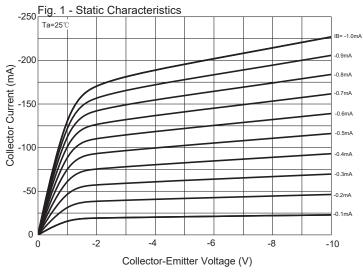
Internal Structure

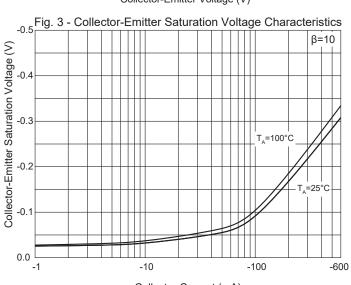
Device Marking

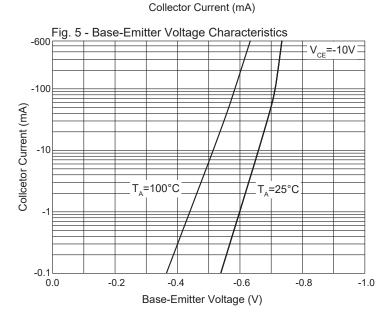
TR1-PNP Electrical Characteristics @ 25°C Unless Otherwise Specified

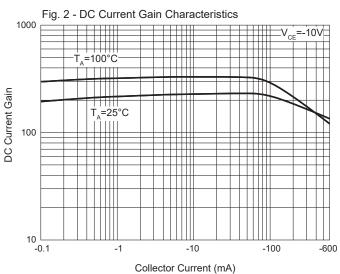
Parameter	Symbol	Min	Тур	Max	Units	Conditions
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	-60			V	I _C =-10μA, I _E =0
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	-60			V	I _C =-10mA, I _B =0
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	-5			V	I _E =-10μA, I _C =0
Collector-Base Cutoff Current	I _{CBO}			-10	nA	V_{CB} =-50V, I_{E} =0
Collector Cutoff Current	I _{CEX}			-50	nA	V _{CE} =-30V, V _{EB(off)} =-0.5V
Emitter-Base Cutoff Current	I _{EBO}			-10	nA	V_{EB} =-5V, I_C =0
DC Current Gain (Note2)	h _{FE(1)}	75				V _{CE} =-10V, I _C =-0.1mA
	h _{FE(2)}	100				V_{CE} =-10V, I_{C} =-1mA
	h _{FE(3)}	100				V_{CE} =-10V, I_{C} =-10mA
	h _{FE(4)}	100		300		V_{CE} =-10V, I_{C} =-150mA
	h _{FE(5)}	50				V _{CE} =-10V, I _C =-500mA
Collector-Emitter Saturation Voltage	V _{CE(sat)}			-0.4	V	I _C =-150mA, I _B =-15mA
				-1.6	V	I _C =-500mA, I _B =-50mA
Base-Emitter Saturation Voltage	\/			-1.3	V	I _C =-150mA, I _B =-15mA
	V _{BE(sat)}			-2.6	V	I _C =-500mA, I _B =-50mA
Transition Frequency	f _T	250			MHz	V_{CE} =-20V, I_{C} =-50mA, f=100MHz

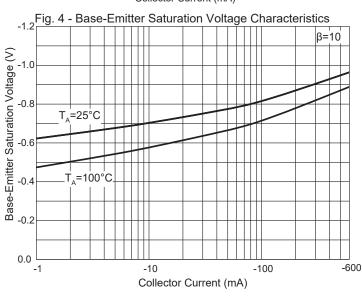
TR2-NPN Electrical Characteristics @ 25°C Unless Otherwise Specified

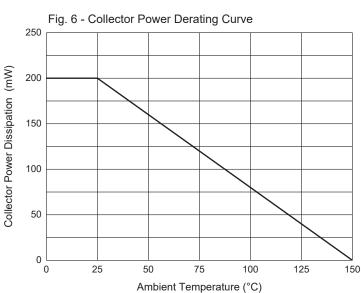

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Collector-Base Breakdown Voltage	V _{(BR)CBO}	75			V	I _C =10μA, I _E =0
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	40			V	I _C =10mA, I _B =0
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	6			V	$I_{E}=10\mu A, I_{C}=0$
Collector Cutoff Current	I _{CBO}			10	nA	$V_{CB}=60V,I_{E}=0$
Collector Cutoff Current	I _{CEX}			10	nA	V _{CE} =60V,V _{EB(off)} =3V
Emiiter Cutoff Current	I _{EBO}			10	nA	$V_{EB}=3V,I_{C}=0$
Base Cutoff Current	I _{BL}			20	nA	V _{CE} =60V,V _{EB(off)} =3V
	h _{FE1}	35				V _{CE} =10V, I _C =0.1mA
	h _{FE2}	50				V _{CE} =10V, I _C =1mA
DC Current Cain	h _{FE3}	75				V _{CE} =10V, I _C =10mA
DC Current Gain	h _{FE4}	100		300		V _{CE} =10V, I _C =150mA
	h _{FE5}	35				V_{CE} =1V, I_{C} =150mA
	h _{FE6}	40				V _{CE} =10V, I _C =500mA
Collector-Emitter Saturation Voltage	V _{CE(sat)}			0.3	V	I _C =150mA, I _B =15mA
				1.0	V	I _C =500mA, I _B =50mA
Base-Emitter Saturation Voltage	V _{BE(sat)}			1.2	V	I _C =150mA, I _B =15mA
				2.0	V	I _C =500mA, I _B =50mA
Transition Frequency	f _T	250			MHz	V _{CE} =20V, I _C =20mA, f=100MHz

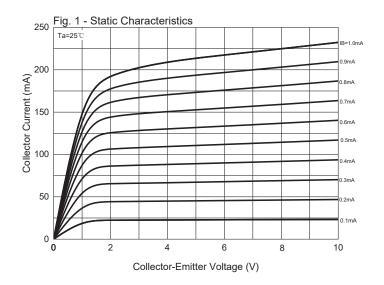

Note: 2.Pluse Width \leq 300 μ s, Duty Cycle \leq 2.0%

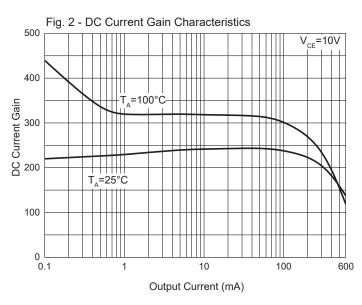

Rev.3-1-02232023 2/5 MCCSEMI.COM

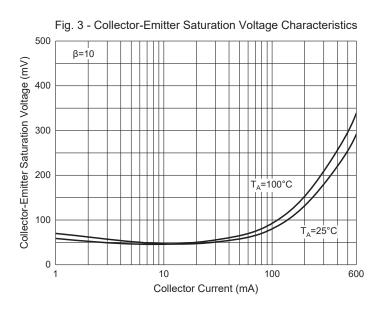


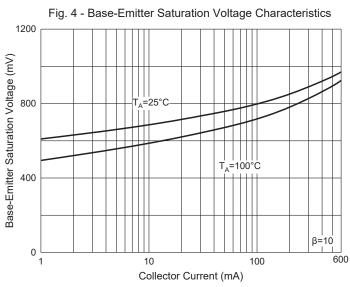

Curve Characteristics (PNP Transistor)

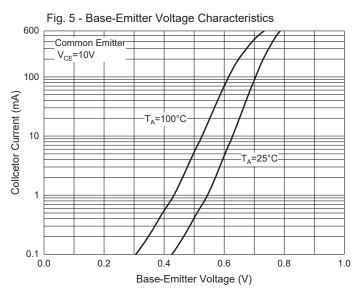


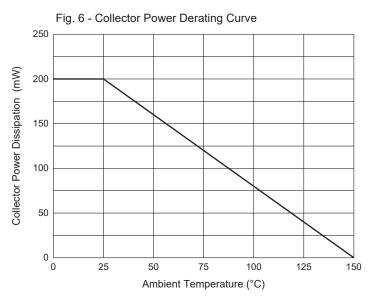









Curve Characteristics (NPN Transistor)



Ordering Information

Device	Packing		
MMDT2227HE3-TP	Tape&Reel: 3Kpcs/Reel		

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp**. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp**, and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp**, products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Rev.3-1-02232023 5/5 MCCSEMI.COM