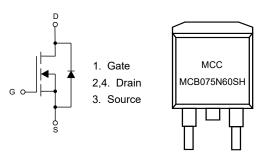


Features

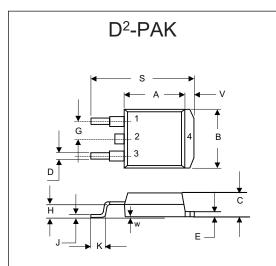
- Low On-resistance and Low Conduction Loss
- Super Junction technology for High Voltage Application
- Soft Switching with Fast Reverse Recovery Diode
- Ultra Low Gate Charge Cause Lower Driving Requirement
- Moisture Sensitivity Level 1
- Epoxy Meets UL 94 V-0 Flammability Rating
- Halogen Free."Green "Device(Note 1)
- Lead Free Finish/RoHS Compliant. "P" Suffix Designates RoHS Compliant. See Ordering Information

Maximum Ratings


- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance Junction to Ambient, Max(Note 2): 60°C/W
- Thermal Resistance Junction to Case, Max: 1.18°C/W

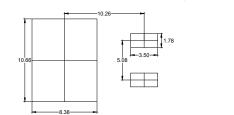
Parameter	Symbol	Value	Unit		
Drain-Source Voltage		V _{DS}	600	V	
Gate-Source Volltage		V _{GS}	±30	V	
Continuous Drain Current	T _C =25°C		23	А	
	T _C =100°C	- I _D	14.5		
Pulsed Drain Current ^(Note 3)		I _{DM}	92	Α	
Total Power Dissipation, T _C =25°C		P _D	106	W	
Single Avalanche Energy ^(Note 4)		E _{AS}	132	mJ	

Note:


- 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 2. Device mounted on 1 in 2 FR-4 board with 2oz. single-sided Copper, in a still air environment with TA=25 °C.
- 3. Repetitive rating; pulse width limited by max. junction temperature.
- 4. Starting T_J=25°C, V_{DD}=50V,I_{AS}=23A.

Internal Structure and Marking Code

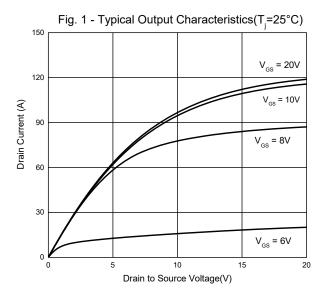
Device Code: MCB075N60SH

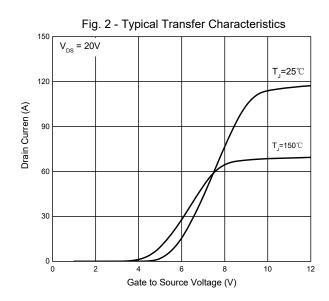

N-CHANNEL Super-Junction Power MOSFET

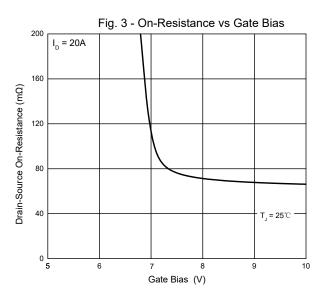
DIMENSIONS					
DIM	INCHES		MM		NOTE
	MIN	MAX	MIN	MAX	NOTE
Α	0.331	0.370	8.40	9.40	
В	0.378	0.417	9.60	10.60	
С	0.165	0.189	4.20	4.80	
D	0.027	0.037	0.68	0.94	
E	0.045	0.055	1.14	1.40	
G	0.	10	2.	54	TYP.
Н	0.096	0.134	2.43	3.40	
J	0.011	0.025	0.28	0.64	
K	0.071	0.131	1.80	3.32	
S	0.575	0.625	14.60	15.87	
V	0.042	0.058	1.07	1.47	
W	0.000	0.010	0.00	0.25	

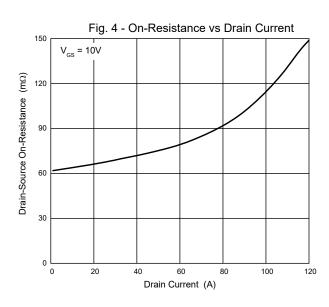
Suggested Solder Pad Layout

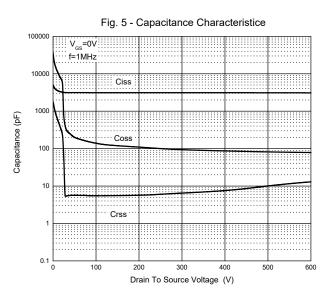
Unit:mm

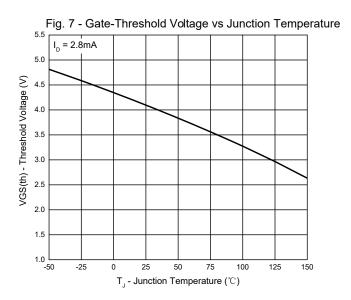


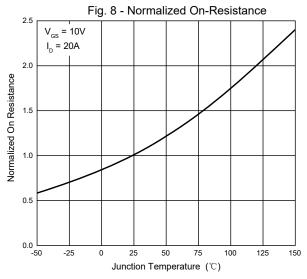

Electrical Characteristics ($T_J = 25\,^{\circ}$ C unless otherwise specified)

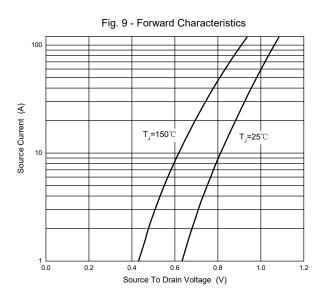

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static Characteristics							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =1mA	600			V	
Gate-Source Leakage Current	I_{GSS}	V _{DS} =0V, V _{GS} =±30V			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			10	μΑ	
Gate-Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =2.8mA	3	4	5	V	
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} =10V, I _D =20A		65	78	mΩ	
Gate Resistance	R_{g}	f=1MHz, open drain		1		Ω	
Diode Characteristics			1		1	I	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A		0.9	1.2	V	
Reverse Recovery Time	t _{rr}			115		ns	
Reverse Recovery Charge	Q _{rr}	V _R =400V, I _F =20A dI _F /dt=100A/µs		723		nC	
Peak Reverse Recovery Current	I _{rrm}			11		Α	
Dynamic Characteristics							
Input Capacitance	C _{iss}			3202			
Output Capacitance	C _{oss}	V_{DS} =100V, V_{GS} =0V, f=1MHz		135		_	
Output capacitance - energy related	C _{o(er)}	V _{DS} =0 to 400V, V _{GS} =0V		132		pF	
Output capacitance - time related	C _{o(tr)}			857			
Total Gate Charge	Q _g			81			
Gate-Source Charge	Q_{gs}	V _{DS} =400V, V _{GS} =10V, I _D =20A		21		nC	
Gate-Drain Charge	Q_{gd}			41			
Turn-On Delay Time	$t_{d(on)}$			66			
Turn-On Rise Time	t _r	V _{DD} =400V, V _{GS} =10V		20			
Turn-Off Delay Time	$t_{\text{d(off)}}$	$R_G=5.6\Omega$, $I_D=20A$		57		ns	
Turn-Off Fall Time	t _f	-		15			

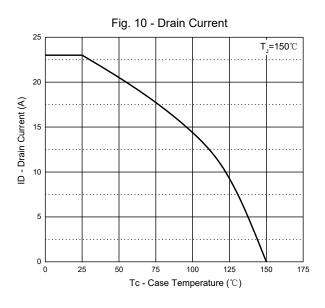


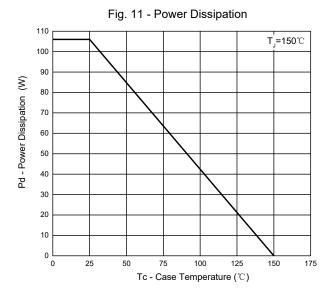

Typical Characteristics (T_J =25 $^{\circ}$ C unless otherwise specified)

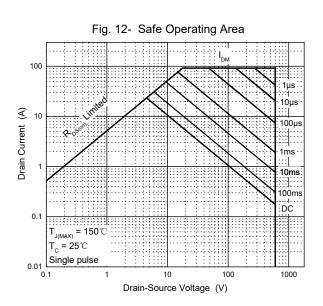









Typical Characteristics (T_J=25 ℃ unless otherwise specified)



Typical Characteristics (T_J=25 ℃ unless otherwise specified)

Fig.13 - Normalized Transient Thermal Impedance, Junction-Case

In descending order D = 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, Single Pulse Normalizd Transient Thermal Resistance Zth(J-C) D (duty cycle) = T_{ON}/T $T_{J,PK} = T_C + P_{DM} \times Z_{th,JC}$ $R_{th,JC} = 1.18^{\circ}C/W$ 0.01 1E-3 L 1E-6 0.01 Rectangular Pulse Width (s)

Rev.4-2-04072025 5/6 MCCSEMI.COM

Ordering Information

Device	Packing
Part Number-TP	Tape&Reel: 800pcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Micro Commercial Components

Corp. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Micro Commercial Components Corp. and all the companies whose products are represented on our website, harmless against all damages. Micro Commercial Components Corp. products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers bought either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourages our customers to do their parts in stopping this practice by buying directly or from authorized distributors.

Rev.4-2-04072025 6/6 MCCSEMI.COM